
TABLE S1. Concentration of different polymer species in versions of the model

| Model               | Isodesmic             |                                  | Monomer<br>Activation<br>+<br>Isodesmic | Segregated Assembly of | Only One End<br>Changes |
|---------------------|-----------------------|----------------------------------|-----------------------------------------|------------------------|-------------------------|
| version:            | Assembly              | $\varepsilon = 1 \times 10^{-4}$ | Assembly                                | $L_n$ and $H_n$        | Conformation            |
| Cooperative?        | No                    | Yes                              | Yes                                     | Yes                    | No                      |
| Equilibrium co      | onstants              |                                  |                                         |                        |                         |
| $K_C$               | 0                     | $1 \times 10^{-4}$               | $1x10^{-4}$                             | $1 \times 10^{-4}$     | $1 \times 10^{-4}$      |
| $K_{LL}$ ( $\mu$ M) | 1                     | $1 \times 10^{-4}$               | 0                                       | $1 \times 10^{-4}$     | $1x10^{-4}$             |
| $K_{LH}(\mu M)$     | 0                     | $1 \times 10^{-4}$               | 0                                       | 0                      | $1x10^{-4}$             |
| $K_{HH}(\mu M)$     | 0                     | $1x10^{4}$                       | $1x10^{4}$                              | $1x10^{4}$             | $1x10^{4}$              |
| $K_{HL}$ ( $\mu$ M) | 0                     | $1x10^{-4}$                      | 0                                       | 0                      | $1x10^{4}$              |
| Concentrations      | s of polymer sp       | pecies at equilib                | rium* (μM)                              |                        |                         |
| L                   | 7.30x10 <sup>-1</sup> | 9.97x10 <sup>-1</sup>            | 9.97x10 <sup>-1</sup>                   | 9.97x10 <sup>-1</sup>  | 7.30x10 <sup>-1</sup>   |
| Н                   | 0                     | 9.97x10 <sup>-5</sup>            | $9.97 \times 10^{-5}$                   | 9.97x10 <sup>-5</sup>  | $7.30 \times 10^{-5}$   |
| monomer             | $7.30x10^{-1}$        | $9.97x10^{-1}$                   | $9.97x10^{-1}$                          | $9.97x10^{-1}$         | $7.30x10^{-1}$          |
| LL                  | 5.33x10 <sup>-1</sup> | 9.93x10 <sup>-5</sup>            | 0                                       | 9.93x10 <sup>-5</sup>  | $5.33 \times 10^{-5}$   |
| HL                  | 0                     | $9.93 \times 10^{-9}$            | 0                                       | 0                      | $5.33 \times 10^{-1}$   |
| LH                  | 0                     | $9.93 \times 10^{-9}$            | 0                                       | 0                      | $5.33 \times 10^{-9}$   |
| НН                  | 0                     | 9.93x10 <sup>-5</sup>            | 9.93x10 <sup>-5</sup>                   | 9.93x10 <sup>-5</sup>  | $5.33 \times 10^{-5}$   |
| dimer               | $5.33x10^{-1}$        | $1.99x10^{-4}$                   | $9.93x10^{-5}$                          | $1.99x10^{-4}$         | $5.33x10^{-1}$          |
| LLL                 | 3.89x10 <sup>-1</sup> | 9.90x10 <sup>-9</sup>            | 0                                       | $9.90 \times 10^{-9}$  | $3.89 \times 10^{-9}$   |
| HLL                 | 0                     | $9.90 \times 10^{-13}$           | 0                                       | 0                      | $3.89 \times 10^{-5}$   |
| LHL                 | 0                     | $9.90 \times 10^{-13}$           | 0                                       | 0                      | $3.89 \times 10^{-5}$   |
| LLH                 | 0                     | $9.90 \times 10^{-13}$           | 0                                       | 0                      | $3.89 \times 10^{-13}$  |
| HHL                 | 0                     | $9.90 \times 10^{-9}$            | 0                                       | 0                      | 3.89x10 <sup>-1</sup>   |
| HLH                 | 0                     | $9.90 \times 10^{-17}$           | 0                                       | 0                      | $3.89 \times 10^{-9}$   |
| LHH                 | 0                     | $9.90 \times 10^{-9}$            | 0                                       | 0                      | $3.89 \times 10^{-9}$   |
| ННН                 | 0                     | 9.90x10 <sup>-5</sup>            | 9.90x10 <sup>-5</sup>                   | 9.90x10 <sup>-5</sup>  | 3.89x10 <sup>-5</sup>   |
| trimer              | 3.89x10 <sup>-1</sup> | 9.90x10 <sup>-5</sup>            | $9.90x10^{-5}$                          | $9.90x10^{-5}$         | 3.89x10 <sup>-1</sup>   |
| LLLL                | 2.84x10 <sup>-1</sup> | $9.87 \times 10^{-13}$           | 0                                       | $9.87 \times 10^{-13}$ | $2.84 \times 10^{-13}$  |
| HLLL                | 0                     | $9.87 \times 10^{-17}$           | 0                                       | 0                      | $2.84 \times 10^{-9}$   |
| LHLL                | 0                     | $9.87 \times 10^{-17}$           | 0                                       | 0                      | $2.84 \times 10^{-9}$   |
| LLHL                | 0                     | $9.87 \times 10^{-17}$           | 0                                       | 0                      | $2.84 \times 10^{-9}$   |
| LLLH                | 0                     | $9.87 \times 10^{-17}$           | 0                                       | 0                      | $2.84 \times 10^{-17}$  |
| HHLL                | 0                     | $9.87 \times 10^{-13}$           | 0                                       | 0                      | $2.84 \times 10^{-5}$   |
| HLHL                | 0                     | $9.87 \times 10^{-21}$           | 0                                       | 0                      | $2.84 \times 10^{-5}$   |
| HLLH                | 0                     | $9.87 \times 10^{-21}$           | 0                                       | 0                      | $2.84 \times 10^{-13}$  |
| LHHL                | 0                     | $9.87 \times 10^{-13}$           | 0                                       | 0                      | $2.84 \times 10^{-5}$   |
| LHLH                | 0                     | $9.87 \times 10^{-21}$           | 0                                       | 0                      | $2.84 \times 10^{-13}$  |
| LLHH                | 0                     | $9.87 \times 10^{-13}$           | 0                                       | 0                      | $2.84 \times 10^{-13}$  |
| LHHH                | 0                     | $9.87 \times 10^{-9}$            | 0                                       | 0                      | $2.84 \times 10^{-9}$   |
| HLHH                | 0                     | $9.87 \times 10^{-17}$           | 0                                       | 0                      | $2.84 \times 10^{-9}$   |
| HHLH                | 0                     | $9.87 \times 10^{-17}$           | 0                                       | 0                      | $2.84 \times 10^{-9}$   |
| HHHL                | 0                     | $9.87 \times 10^{-9}$            | 0                                       | 0                      | $2.84 \times 10^{-1}$   |
| НННН                | 0                     | 9.87x10 <sup>-5</sup>            | 9.87x10 <sup>-5</sup>                   | 9.87x10 <sup>-5</sup>  | 2.84x10 <sup>-5</sup>   |
| tetramers           | $2.84x10^{-1}$        | $9.87x10^{-5}$                   | $9.87x10^{-5}$                          | $9.87x10^{-5}$         | $2.8x10^{-1}$           |

tetramers  $2.84x10^{-1}$   $9.87x10^{-5}$   $9.87x10^{-5}$   $9.87x10^{-5}$   $9.87x10^{-5}$   $2.8x10^{-1}$ \*Results were calculated for 10  $\mu$ M total protein ( $z_o$ ). In bold are the most abundant species of each length. In italics are the total concentration of polymers of each length.

**Figure S1.** Determining which combination of parameters produce the greatest cooperativity. In cooperative systems, polymer does not assemble unless the equilibrium monomer concentration has nearly reached its maximum possible value. Therefore, in a plot of *p* versus  $z_I$ , ideally cooperative systems will exhibit a sharp 90° bend upwards; the closer a curve is to this ideal, the more cooperative the system. (*A*) In cooperative systems,  $K_{HH}$  must be large and all other parameters small. The five equilibrium constants were set equal to 1, 0.1, or 10 in all combinations. For each combination of values, *p* and  $z_I$  were first calculated for a range of L concentrations, then normalized by dividing by  $z_I^{\infty}$ . Arrow: The greatest cooperativity is seen in the right-most trajectory, where  $K_{HH} = 10$  while all other equilibrium constants = 0.1. Arrowhead: Isodesmic polymerization with all K's = 1 is in the middle of the data sets. (*B*) Nearly ideal cooperativity can be produced when equilibrium constants are varied over a wider range. Here,  $K_C$ ,  $K_{LL}$ ,  $K_{LH}$ , and  $K_{HL} = \varepsilon$  and  $K_{HH} = 1/\varepsilon$  for  $\varepsilon = 1$ ,  $1 \times 10^{-2}$ ,  $1 \times 10^{-4}$ , and  $1 \times 10^{-6}$ . The left hand, least sharply curved line is for  $\varepsilon = 1$ , isodesmic polymerization. As  $\varepsilon$  decreases, polymerization approaches ideal cooperativity.

